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Preface

These lab exercises supplement the third edition of OpenIntro Statistics textbook. Each lab steps through
the process of using the R programming language for collecting, analyzing, and using statistical data to make
inferences and conclusions about real world phenomena.

This version of the labs have been modified by Arend Kuyper to include new datasets and examples for
introductory statistics courses at Northwestern University. Visit Labs for R at OpenIntro for the original
materials. The chapters in this book were adapted from labs originally written by Mark Hansen and adapted
for OpenIntro by Andrew Bray and Mine Çetinkaya-Rundel.

0.1 Using these labs
All of the labs on this website are made available under a Creative Commons Attribution-ShareAlike license.
You are free to copy, redistribute, and modify the material in any format so long as you provide attribution.
Any derivative versions of the content must be distributed under the same license.

Figure 1: Creative Commons Attribution ShareAlike
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Chapter 1

Working Efficiently with RStudio

1.1 Why RStudio?
RStudio is an extremely powerful tool that is intended to optimize how we interact with the statistical
software known as R. We could use R’s basic interface, but RStudio is designed to streamline and organize
statistical and analytic work with R. Like any tool we must learn how to use it properly, which is the focus
of this lab.

While it might seem clunky or cumbersome at first, it is important to discipline yourself and adhere to sound
workflow practices. Doing this from the very beginning will payoff immensely in later labs and beyond —
whether or not you intend to work with RStudio in the future. Exercising and expanding your mind to
preform analytic coding will make you a better critical thinker and problem solver.

1.2 Setting Up an R Project
It is important to recognize that quality analytic work requires that your work be easy to follow, replicate,
and reference by others or by the future you. Therefore it is imperative that you strive to be as organized
as possible. RStudio helps you organize all your work on a given data analysis/project through the creation
of R projects.

There are several ways one could go about creating an R project, but we would suggest following the steps
outlined below. These steps outline how to get setup for the first lab, but should, with obvious alterations,
be followed for each lab.

Step 1

Create a folder somewhere on your computer, say on your desktop, and give it a descriptive name (e.g. STAT
202). This folder is where you will keep all of your work for each lab. You could save all your electronic
notes here too.

Step 2

Next you will want to create a subfolder for an individual task or sub-project (e.g. Lab 01). The graphic
below displays an example folder structure.

Step 3

Open RStudio.

Step 4

7
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Figure 1.1:

4. Create a project by navigating to the upper right-hand corner of the program and clicking Project
(None) » New Project.

Step 5

Select Existing Directory. Recall that in step 1, you created a file location for lab 1 — our data analysis
project.

Step 6

Click Browse and navigate to where you created the Lab 01 folder. Select this folder and then click Create
Project.

Your R project has now been created. Note that in the upper right-hand corner, the program indicates that
you are working on the project named Lab 01.

Step 7

Creating an R script is the next MAJOR step in this process. Using a script file is key to organizing your
code for quick reference. You should think of an R script file as a thorough record of how to conduct an
analysis or solve the problem at hand. You should strive to make your R script as organized as possible so
that someone else could work through your code and reproduce the same output/answers/results.

To create an R script, go to the upper left-hand corner and click the white box icon then select R Script.

Step 8

Now you can proceed to write your code in the R Script. You can also save your progress by clicking on the
save icon located in the icon bar. Notice that it is saved within your R project folder — Lab 01 in this case.
This is why we created an R project, so that all of our work for an analysis/project is kept in one central
location.
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Figure 1.2:

Now, let’s practice writing some R code. Good analytic code requires good comments. Comments are meant
for human consumption and to explain what the executable code is doing. Therefore we need to let the
program know that it is a comment and that it should not attempt to run it. In R, # is used to signal a
comment. In RStudio, this will turn the line green, which indicates that it will be read as a comment — see
the figure below. Also notice how we use white space (empty lines) to make it easier on our eyes to navigate
and read the script file. Practice by typying the code that is pictured.

We can use R as a calculator, as shown below. To run the line of code 2+2, you place your cursor anywhere on
the that line of code and click Run, which is located in the top right corner of the script pane. Alternatively,
you could have used the keyboard short cut of Command + return (Mac) or ctrl + enter (PC).

You also have the option of running multiple lines of code by highlighting the lines of code and clicking Run
or using the keyboard short cut.

After running the command, the result will show up in your Console pane, which is located beneath the
Script pane. In the screenshot below, you can see that our 2+2 command has generated an answer of 4.

Continue to practice writting an R script by reproducing the code depicted below. As the comments in the
pictured code indicate, we are loading/reading-in the arbuthnot dataset. Then we are taking a look at some
of the observations from the dataset by using the functions head() and tail(). Make sure to run the lines
of code in order, otherwise the the software will return error messages. We suggest running one line at a
time to ensure your code is typed correctly and to see what each line is doing.

Notice the copious usage of comments in our analytic code. In general, analytic code should make liberal
use of comments. The length and specificity of comments depends on a person’s experience with a coding
language. With experience comes the understanding and ability to write concise comments that cut directly
to what information is absolutely necessary to communicate. It never hurts to have more comments than
actual executable code, especially for those new to coding. Keep in mind that in the future you might want
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Figure 1.3:

to share analytic code with co-workers or peers, or go back to reference code months or years after you’ve
written it.

1.3 Summary
The essential workflow that should be followed for each lab:

1. Create and work in an R project to ensure all work is kept in a single location.
2. Organize your work within an R script.

• Use comments to clearly communicate what the code is doing.
• Use white space (empty lines and spaces) to make the document easier to read and navigate.

There are many other features of RStudio that you’ll find useful, but are not covered in this document.
RStudio strives to provide help in many different ways:

1. The help tab within the lower right-hand pane.
2. Help automatically appears when typing a function (auto-complete).
3. You may begin by typing the name of function and it will suggest several options.
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Figure 1.4:
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Figure 1.5:
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Figure 1.6:
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Figure 1.7:
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Chapter 2

Introduction to R and RStudio

The goal of this lab is to introduce you to R and RStudio, which you’ll be using throughout the course both
to learn the statistical concepts discussed in the texbook and also to analyze real data and come to informed
conclusions. To straighten out which is which: R is the name of the programming language itself and RStudio
is a convenient user interface for working with R.

As the labs progress, you are encouraged to explore beyond what the labs dictate; a willingness to experiment
will make you a much better programmer. Before we get to that stage, however, you need to build some
basic fluency in R. Today we begin with the fundamental building blocks of R and RStudio: the interface,
reading in data, and basic commands.

Figure 2.1: The RStudio Interface

The panel in the upper right contains your workspace as well as a history of the commands that you’ve
previously entered. Any plots that you generate will show up in the panel in the lower right corner.
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The panel on the left is where the action happens. It’s called the console. Everytime you launch RStudio, it
will have the same text at the top of the console telling you the version of R that you’re running. Below that
information is the prompt. As its name suggests, this prompt is really a request, a request for a command.
Initially, interacting with R is all about typing commands and interpreting the output. These commands and
their syntax have evolved over decades (literally) and now provide what many users feel is a fairly natural
way to access data and organize, describe, and invoke statistical computations.

To get you started, enter the following command at the R prompt (i.e. right after > on the console). You
can either type it in manually or copy and paste it from this document.
source("http://www.openintro.org/stat/data/arbuthnot.R")

This command instructs R to access the OpenIntro website and fetch some data: the Arbuthnot baptism
counts for boys and girls. You should see that the workspace area in the upper righthand corner of the
RStudio window now lists a data set called arbuthnot that has 82 observations on 3 variables. As you
interact with R, you will create a series of objects. Sometimes you load them as we have done here, and
sometimes you create them yourself as the byproduct of a computation or some analysis you have performed.
Note that because you are accessing data from the web, this command (and the entire assignment) will work
in a computer lab, in the library, or in your dorm room; anywhere you have access to the Internet.

2.1 The Data: Dr. Arbuthnot’s Baptism Records
The Arbuthnot data set refers to Dr. John Arbuthnot, an 18th century physician, writer, and mathematician.
He was interested in the ratio of newborn boys to newborn girls, so he gathered the baptism records for
children born in London for every year from 1629 to 1710. We can take a look at the data by typing its
name into the console.
arbuthnot

What you should see are four columns of numbers, each row representing a different year: the first entry
in each row is simply the row number (an index we can use to access the data from individual years if we
want), the second is the year, and the third and fourth are the numbers of boys and girls baptized that year,
respectively. Use the scrollbar on the right side of the console window to examine the complete data set.

Note that the row numbers in the first column are not part of Arbuthnot’s data. R adds them as part of
its printout to help you make visual comparisons. You can think of them as the index that you see on the
left side of a spreadsheet. In fact, the comparison to a spreadsheet will generally be helpful. R has stored
Arbuthnot’s data in a kind of spreadsheet or table called a data frame.

You can see the dimensions of this data frame by typing:
dim(arbuthnot)

## [1] 82 3

This command should output [1] 82 3, indicating that there are 82 rows and 3 columns (we’ll get to what
the [1] means in a bit), just as it says next to the object in your workspace. You can see the names of these
columns (or variables) by typing:
names(arbuthnot)

## [1] "year" "boys" "girls"

You should see that the data frame contains the columns year, boys, and girls. At this point, you might
notice that many of the commands in R look a lot like functions from math class; that is, invoking R
commands means supplying a function with some number of arguments. The dim and names commands, for
example, each took a single argument, the name of a data frame.

One advantage of RStudio is that it comes with a built-in data viewer. Click on the name arbuthnot in
the Environment pane (upper right window) that lists the objects in your workspace. This will bring up an
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alternative display of the data set in the Data Viewer (upper left window). You can close the data viewer
by clicking on the x in the upper lefthand corner.

2.2 Some Exploration
Let’s start to examine the data a little more closely. We can access the data in a single column of a data
frame separately using a command like
arbuthnot$boys

This command will only show the number of boys baptized each year.

Excercise 1: What command would you use to extract just the counts of girls baptized? Try it!

Notice that the way R has printed these data is different. When we looked at the complete data frame,
we saw 82 rows, one on each line of the display. These data are no longer structured in a table with other
variables, so they are displayed one right after another. Objects that print out in this way are called vectors;
they represent a set of numbers. R has added numbers in [brackets] along the left side of the printout to
indicate locations within the vector. For example, 5218 follows [1], indicating that 5218 is the first entry
in the vector. And if [43] starts a line, then that would mean the first number on that line would represent
the 43rd entry in the vector.

R has some powerful functions for making graphics. We can create a simple plot of the number of girls
baptized per year with the command:
plot(x = arbuthnot$year, y = arbuthnot$girls)

By default, R creates a scatterplot with each x,y pair indicated by an open circle. The plot itself should
appear under the Plots tab of the lower right panel of RStudio. Notice that the command above again looks
like a function, this time with two arguments separated by a comma. The first argument in the plot function
specifies the variable for the x-axis and the second for the y-axis. If we wanted to connect the data points
with lines, we could add a third argument, the letter l for line.
plot(x = arbuthnot$year, y = arbuthnot$girls, type = "l")

You might wonder how you are supposed to know that it was possible to add that third argument. Thankfully,
R documents all of its functions extensively. To read what a function does and learn the arguments that are
available to you, just type in a question mark followed by the name of the function that you’re interested in.
Try the following.
?plot

Notice that the help file replaces the plot in the lower right panel. You can toggle between plots and help
files using the tabs at the top of that panel.

Exercise 2: Is there an apparent trend in the number of girls baptized over the years? How would you
describe it?

Now, suppose we want to plot the total number of baptisms. To compute this, we could use the fact that R
is really just a big calculator. We can type in mathematical expressions like
5218 + 4683
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to see the total number of baptisms in 1629. We could repeat this once for each year, but there is a faster
way. If we add the vector for baptisms for boys and girls, R will compute all sums simultaneously.
arbuthnot$boys + arbuthnot$girls

What you will see are 82 numbers (in that packed display, because we aren’t looking at a data frame here),
each one representing the sum we’re after. Take a look at a few of them and verify that they are right.
Therefore, we can make a plot of the total number of baptisms per year with the command
plot(arbuthnot$year, arbuthnot$boys + arbuthnot$girls, type = "l")

This time, note that we left out the names of the first two arguments. We can do this because the help file
shows that the default for plot is for the first argument to be the x-variable and the second argument to be
the y-variable.

Similarly to how we computed the proportion of boys, we can compute the ratio of the number of boys to
the number of girls baptized in 1629 with
5218 / 4683

or we can act on the complete vectors with the expression
arbuthnot$boys / arbuthnot$girls

The proportion of newborns that are boys
5218 / (5218 + 4683)

or this may also be computed for all years simultaneously:
arbuthnot$boys / (arbuthnot$boys + arbuthnot$girls)

Note that with R as with your calculator, you need to be conscious of the order of operations. Here, we
want to divide the number of boys by the total number of newborns, so we have to use parentheses. Without
them, R will first do the division, then the addition, giving you something that is not a proportion.

Exercise 3: Now, make a plot of the proportion of boys over time. What do you see? Tip: If you use the
up and down arrow keys, you can scroll through your previous commands, your so-called command history.
You can also access it by clicking on the history tab in the upper right panel. This will save you a lot of
typing in the future.

Finally, in addition to simple mathematical operators like subtraction and division, you can ask R to make
comparisons like greater than, >, less than, <, and equality, ==. For example, we can ask if boys outnumber
girls in each year with the expression
arbuthnot$boys > arbuthnot$girls

This command returns 82 values of either TRUE if that year had more boys than girls, or FALSE if that year
did not (the answer may surprise you). This output shows a different kind of data than we have considered
so far. In the arbuthnot data frame our values are numerical (the year, the number of boys and girls). Here,
we’ve asked R to create logical data, data where the values are either TRUE or FALSE. In general, data analysis
will involve many different kinds of data types, and one reason for using R is that it is able to represent and
compute with many of them.

This seems like a fair bit for your first lab, so let’s stop here. To exit RStudio you can click the x in the
upper right corner of the whole window. You will be prompted to save your workspace. If you click save,
RStudio will save the history of your commands and all the objects in your workspace so that the next time
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you launch RStudio, you will see arbuthnot and you will have access to the commands you typed in your
previous session. For now, click save, then start up RStudio again.

2.3 On Your Own
In the previous few pages, you recreated some of the displays and preliminary analysis of Arbuthnot’s baptism
data. Your assignment involves repeating these steps, but for present day birth records in the United States.
Load up the present day data with the following command.
source("http://www.openintro.org/stat/data/present.R")

The data are stored in a data frame called present.

• What years are included in this data set? What are the dimensions of the data frame and what are
the variable or column names?

• How do these counts compare to Arbuthnot’s? Are they on a similar scale?

• Make a plot that displays the boy-to-girl ratio for every year in the data set. What do you see? Does
Arbuthnot’s observation about boys being born in greater proportion than girls hold up in the U.S.?
Include the plot in your response.

• In what year did we see the most total number of births in the U.S.? You can refer to the help files or the
R reference card http://cran.r-project.org/doc/contrib/Short-refcard.pdf to find helpful commands.

These data come from a report by the Centers for Disease Control http://www.cdc.gov/nchs/data/nvsr/
nvsr53/nvsr53_20.pdf. Check it out if you would like to read more about an analysis of sex ratios at birth
in the United States.

That was a short introduction to R and RStudio, but we will provide you with more functions and a more
complete sense of the language as the course progresses. Feel free to browse around the websites for R and
RStudio if you’re interested in learning more, or find more labs for practice at http://openintro.org.

http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://www.cdc.gov/nchs/data/nvsr/nvsr53/nvsr53_20.pdf
http://www.cdc.gov/nchs/data/nvsr/nvsr53/nvsr53_20.pdf
http://www.r-project.org
http://rstudio.org
http://openintro.org


22 CHAPTER 2. INTRODUCTION TO R AND RSTUDIO



Chapter 3

Introduction to Data

This lab is structured to guide you through an organized process such that you could easily organize your
code with comments – meaning your R script – into a lab report. I would suggest getting into the habit of
writing an organized and commented R script that completes the tasks and answers the questions provided
in the lab – including in the Own Your Own section.

Some define Statistics as the field that focuses on turning information into knowledge. The first step in that
process is to summarize and describe the raw information - the data. In this lab, you will gain insight into
public health by generating simple graphical and numerical summaries of a data set collected by the Centers
for Disease Control and Prevention (CDC). As this is a large data set, along the way you’ll also learn the
indispensable skills of data processing and subsetting.

3.1 Getting started
The Behavioral Risk Factor Surveillance System (BRFSS) is an annual telephone survey of 350,000 people in
the United States. As its name implies, the BRFSS is designed to identify risk factors in the adult population
and report emerging health trends. For example, respondents are asked about their diet and weekly physical
activity, their HIV/AIDS status, possible tobacco use, and even their level of healthcare coverage. The
BRFSS Web site (http://www.cdc.gov/brfss) contains a complete description of the survey, including the
research questions that motivate the study and many interesting results derived from the data.

We will focus on a random sample of 20,000 people from the BRFSS survey conducted in 2000. While there
are over 200 variables in this data set, we will work with a small subset.

We begin by loading the data set of 20,000 observations into the R workspace. After launching RStudio,
enter the following command.
source("http://www.openintro.org/stat/data/cdc.R")

The data set cdc that shows up in your workspace is a data matrix, with each row representing a case and
each column representing a variable. R calls this data format a data frame, which is a term that will be used
throughout the labs.

To view the names of the variables, type the command
names(cdc)

This returns the names genhlth, exerany, hlthplan, smoke100, height, weight, wtdesire, age, and
gender. Each one of these variables corresponds to a question that was asked in the survey. For example,
for genhlth, respondents were asked to evaluate their general health, responding either excellent, very good,
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good, fair or poor. The exerany variable indicates whether the respondent exercised in the past month (1)
or did not (0). Likewise, hlthplan indicates whether the respondent had some form of health coverage (1)
or did not (0). The smoke100 variable indicates whether the respondent had smoked at least 100 cigarettes
in her lifetime. The other variables record the respondent’s height in inches, weight in pounds as well as
their desired weight, wtdesire, age in years, and gender.

Exercise 1: How many cases are there in this data set? How many variables? For each variable, identify
its data type (e.g. categorical, discrete).

We can have a look at the first few entries (rows) of our data with the command
head(cdc)

and similarly we can look at the last few by typing
tail(cdc)

You could also look at all of the data frame at once by typing its name into the console, but that might be
unwise here. We know cdc has 20,000 rows, so viewing the entire data set would mean flooding your screen.
It’s better to take small peeks at the data with head, tail or the subsetting techniques that you’ll learn in
a moment.

3.2 Summaries and tables
The BRFSS questionnaire is a massive trove of information. A good first step in any analysis is to distill all
of that information into a few summary statistics and graphics. As a simple example, the function summary
returns a numerical summary: minimum, first quartile, median, mean, second quartile, and maximum.

For weight this is
summary(cdc$weight)

R also functions like a very fancy calculator. If you wanted to compute the interquartile range for the
respondents’ weight, you would look at the output from the summary command above and then enter
190 - 140

R also has built-in functions to compute summary statistics one by one. For instance, to calculate the mean,
median, and variance of weight, type
mean(cdc$weight)
var(cdc$weight)
median(cdc$weight)

While it makes sense to describe a quantitative variable like weight in terms of these statistics, what about
categorical data? We would instead consider the sample frequency or relative frequency distribution. The
function table does this for you by counting the number of times each kind of response was given. For
example, to see the number of people who have smoked 100 cigarettes in their lifetime, type
table(cdc$smoke100)

or instead look at the relative frequency distribution by typing
table(cdc$smoke100)/20000

Notice how R automatically divides all entries in the table by 20,000 in the command above. This is similar
to something we observed in the Introduction to R; when we multiplied or divided a vector with a number,
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R applied that action across entries in the vectors. As we see above, this also works for tables. Next, we
make a bar plot of the entries in the table by putting the table inside the barplot command.
barplot(table(cdc$smoke100))

Notice what we’ve done here! We’ve computed the table of cdc$smoke100 and then immediately applied
the graphical function, barplot. This is an important idea: R commands can be nested. You could also
break this into two steps by typing the following:
smoke <- table(cdc$smoke100)

barplot(smoke)

Here, we’ve made a new object, a table, called smoke (the contents of which we can see by typing smoke into
the console) and then used it in as the input for barplot. The special symbol <- performs an assignment,
taking the output of one line of code and saving it into an object in your workspace. This is another important
idea that we’ll return to later.

Exercise 2: Create a numerical summary for height and age, and compute the interquartile range for each.
Compute the relative frequency distribution for gender and exerany. How many males are in the sample?
What proportion of the sample reports being in excellent health?

The table command can be used to tabulate any number of variables that you provide. For example, to
examine which participants have smoked across each gender, we could use the following.
table(cdc$gender,cdc$smoke100)

Here, we see column labels of 0 and 1. Recall that 1 indicates a respondent has smoked at least 100 cigarettes.
The rows refer to gender. To create a mosaic plot of this table, we would enter the following command.
mosaicplot(table(cdc$gender,cdc$smoke100))

We could have accomplished this in two steps by saving the table in one line and applying mosaicplot in
the next (see the table/barplot example above).

Exercise 3: What does the mosaic plot reveal about smoking habits and gender?

3.3 Interlude: How R thinks about data
We mentioned that R stores data in data frames, which you might think of as a type of spreadsheet. Each
row is a different observation (a different respondent) and each column is a different variable (the first is
genhlth, the second exerany and so on). We can see the size of the data frame next to the object name in
the workspace or we can type
dim(cdc)

which will return the number of rows and columns. Now, if we want to access a subset of the full data frame,
we can use row-and-column notation. For example, to see the sixth variable of the 567th respondent, use
the format
cdc[567,6]
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which means we want the element of our data set that is in the 567th row (meaning the 567th person or
observation) and the 6th column (in this case, weight). We know that weight is the 6th variable because it
is the 6th entry in the list of variable names
names(cdc)

To see the weights for the first 10 respondents we can type
cdc[1:10,6]

In this expression, we have asked just for rows in the range 1 through 10. R uses the : to create a range of
values, so 1:10 expands to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. You can see this by entering
1:10

Finally, if we want all of the data for the first 10 respondents, type
cdc[1:10,]

By leaving out an index or a range (we didn’t type anything between the comma and the square bracket),
we get all the columns. When starting out in R, this is a bit counterintuitive. As a rule, we omit the column
number to see all columns in a data frame. Similarly, if we leave out an index or range for the rows, we
would access all the observations, not just the 567th, or rows 1 through 10. Try the following to see the
weights for all 20,000 respondents fly by on your screen
cdc[,6]

Recall that column 6 represents respondents’ weight, so the command above reported all of the weights in
the data set. An alternative method to access the weight data is by referring to the name. Previously, we
typed names(cdc) to see all the variables contained in the cdc data set. We can use any of the variable
names to select items in our data set.
cdc$weight

The dollar-sign tells R to look in data frame cdc for the column called weight. Since that’s a single vector,
we can subset it with just a single index inside square brackets. We see the weight for the 567th respondent
by typing
cdc$weight[567]

Similarly, for just the first 10 respondents

cdc$weight[1:10]

The command above returns the same result as the cdc[1:10,6] command. Both row-and-column notation
and dollar-sign notation are widely used, which one you choose to use depends on your personal preference.

3.4 A little more on subsetting
It’s often useful to extract all individuals (cases) in a data set that have specific characteristics. We accomplish
this through conditioning commands. First, consider expressions like
cdc$gender == "m"

or
cdc$age > 30

These commands produce a series of TRUE and FALSE values. There is one value for each respondent, where
TRUE indicates that the person was male (via the first command) or older than 30 (second command).
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Suppose we want to extract just the data for the men in the sample, or just for those over 30. We can use
the R function subset to do that for us. For example, the command
mdata <- subset(cdc, cdc$gender == "m")

will create a new data set called mdata that contains only the men from the cdc data set. In addition to
finding it in your workspace alongside its dimensions, you can take a peek at the first several rows as usual
head(mdata)

This new data set contains all the same variables but just under half the rows. It is also possible to tell R
to keep only specific variables, which is a topic we’ll discuss in a future lab. For now, the important thing
is that we can carve up the data based on values of one or more variables.

As an aside, you can use several of these conditions together with & and |. The & is read “and” so that
m_and_over30 <- subset(cdc, gender == "m" & age > 30)

will give you the data for men over the age of 30. The | character is read “or” so that
m_or_over30 <- subset(cdc, gender == "m" | age > 30)

will take people who are men or over the age of 30 (why that’s an interesting group is hard to say, but
right now the mechanics of this are the important thing). In principle, you may use as many “and” and “or”
clauses as you like when forming a subset.

Exercise 4: Create a new object called under23_and_smoke that contains all observations of respondents
under the age of 23 that have smoked 100 cigarettes in their lifetime. Write the command you used to create
the new object as the answer to this exercise.

3.5 Quantitative data
With our subsetting tools in hand, we’ll now return to the task of the day: making basic summaries of the
BRFSS questionnaire. We’ve already looked at categorical data such as smoke and gender so now let’s turn
our attention to quantitative data. Two common ways to visualize quantitative data are with box plots and
histograms. We can construct a box plot for a single variable with the following command.
boxplot(cdc$height)

You can compare the locations of the components of the box by examining the summary statistics.
summary(cdc$height)

Confirm that the median and upper and lower quartiles reported in the numerical summary match those
in the graph. The purpose of a boxplot is to provide a thumbnail sketch of a variable for the purpose of
comparing across several categories. So we can, for example, compare the heights of men and women with
boxplot(cdc$height ~ cdc$gender)

The notation here is new. The ~ character can be read versus or as a function of. So we’re asking R to give
us a box plots of heights where the groups are defined by gender.

Next let’s consider a new variable that doesn’t show up directly in this data set: Body Mass Index (BMI)
(http://en.wikipedia.org/wiki/Body_mass_index). BMI is a weight to height ratio and can be calculated
as:

http://en.wikipedia.org/wiki/Body_mass_index
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BMI = weight (lb)
height (in)2 ∗ 703

703 is the approximate conversion factor to change units from metric (meters and kilograms) to imperial
(inches and pounds).

The following two lines first make a new object called bmi and then creates box plots of these values, defining
groups by the variable cdc$genhlth.
bmi <- (cdc$weight / cdc$height^2) * 703
boxplot(bmi ~ cdc$genhlth)

Notice that the first line above is just some arithmetic, but it’s applied to all 20,000 numbers in the cdc
data set. That is, for each of the 20,000 participants, we take their weight, divide by their height-squared
and then multiply by 703. The result is 20,000 BMI values, one for each respondent. This is one reason why
we like R: it lets us perform computations like this using very simple expressions.

Exercise 5: What does this box plot show? Pick another categorical variable from the data set and see
how it relates to BMI. List the variable you chose, why you might think it would have a relationship to BMI,
and indicate what the figure seems to suggest.

Finally, let’s make some histograms. We can look at the histogram for the age of our respondents with the
command
hist(cdc$age)

Histograms are generally a very good way to see the shape of a single distribution, but that shape can change
depending on how the data is split between the different bins. You can control the number of bins by adding
an argument to the command. In the next two lines, we first make a default histogram of bmi and then one
with 50 breaks.
hist(bmi)
hist(bmi, breaks = 50)

Note that you can flip between plots that you’ve created by clicking the forward and backward arrows in
the lower right region of RStudio, just above the plots. How do these two histograms compare?

At this point, we’ve done a good first pass at analyzing the information in the BRFSS questionnaire. We’ve
found an interesting association between smoking and gender, and we can say something about the relation-
ship between people’s assessment of their general health and their own BMI. We’ve also picked up essential
computing tools – summary statistics, subsetting, and plots – that will serve us well throughout this course.

3.6 On Your Own
• Make a scatterplot of weight versus desired weight. Describe the relationship between these two

variables.

• Let’s consider a new variable: the difference between desired weight (wtdesire) and current weight
(weight). Create this new variable by subtracting the two columns in the data frame and assigning
them to a new object called wdiff.

• What type of data is wdiff? If an observation wdiff is 0, what does this mean about the person’s
weight and desired weight. What if wdiff is positive or negative?
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• Describe the distribution of wdiff in terms of its center, shape, and spread, including any plots you
use. What does this tell us about how people feel about their current weight?

• Using numerical summaries and a side-by-side box plot, determine if men tend to view their weight
differently than women.

• Now it’s time to get creative. Find the mean and standard deviation of weight and determine what
proportion of the weights that are within one standard deviation of the mean.
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Chapter 4

The Normal Distribution

This lab is structured to guide you through an organized process such that you could easily organize your
code with comments – meaning your R script – into a lab report. I would suggest getting into the habit of
writing an organized and commented R script that completes the tasks and answers the questions provided
in the lab – including in the Own Your Own section.

4.1 Getting started
In this lab we’ll investigate the probability distribution that is most central to statistics: the normal distri-
bution. If we are confident that our data are nearly normal, that opens the door to many powerful statistical
methods. Here we’ll use the graphical tools of R to assess the normality of our data and also learn how to
generate random numbers from a normal distribution.

4.2 The Data
This week we’ll be working with measurements of body dimensions. This data set contains measurements
from 247 men and 260 women, most of whom were considered healthy young adults.
download.file("http://www.openintro.org/stat/data/bdims.RData", destfile = "bdims.RData")
load("bdims.RData")

Let’s take a quick peek at the first few rows of the data.
head(bdims)

You’ll see that for every observation we have 25 measurements, many of which are either diameters or girths.
A key to the variable names can be found at http://www.openintro.org/stat/data/bdims.php, but we’ll be
focusing on just three columns to get started: weight in kg (wgt), height in cm (hgt), and sex (1 indicates
male, 0 indicates female).

Since males and females tend to have different body dimensions, it will be useful to create two additional
data sets: one with only men and another with only women.
mdims <- subset(bdims, sex == 1)
fdims <- subset(bdims, sex == 0)

Exercise 1: Make a histogram of men’s heights and a histogram of women’s heights. After plotting each
histogram, it might also be helpful to construct the histograms on the same plot/axes. Complete the code
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below to produce such a plot. Boxplots for each gender might also be helpful. After examining the plots,
how would you compare the various aspects of the two distributions?

Complete the code chunk below, by replacing ????, to constuct a plot containing a histogram of heights
for each gender plotted on the same set of axes. Note the code alters the colors to distingish between the
histograms.
### Constructing plot with histogtrams of heights by sex
# 1) Calculating & storing the x-axis limits to encompass all possible height values
# with a little extra "padding"
x_limits <- range(bdims$hgt) + c(-5,5)
# 2) Plot the first histogram, which initilizes the plotting space
hist( ???? , xlim = x_limits, col = rgb(1,0,0,.4), main = "Histograms of Heights by Sex", xlab = "Height (cm)")
# 3) Add the other gender's histogram
hist( ???? , col = rgb(0,0,1,.4), add = TRUE)

4.3 Normal distribution
In your description of the distributions, did you use words like bell-shaped or normal? It’s tempting to say
so when faced with a unimodal symmetric distribution.

To see how accurate that description is, we can plot a normal distribution curve on top of a histogram to
see how closely the data follow a normal distribution.

The overlaid normal curve should have the same mean and standard deviation as the data. We’ll be working
with the heights of women, so let’s store them as a separate object and then calculate some statistics that
will be used/referenced later.
fhgtmean <- mean(fdims$hgt)
fhgtsd <- sd(fdims$hgt)

Next we make a density histogram to use as the backdrop and use the lines function to overlay a normal
probability curve. The difference between a frequency histogram and a density histogram is that while in a
frequency histogram the heights of the bars add up to the total number of observations, in a density histogram
the areas of the bars add up to 1. The area of each bar can be calculated as simply the height times the
width of the bar. Using a density histogram allows us to properly overlay a normal distribution curve over
the histogram since the curve is a normal probability density function. Frequency and density histograms
both display the same exact shape; they only differ in their y-axis. You can verify this by comparing the
frequency histogram you constructed earlier and the density histogram created by the commands below.
hist(fdims$hgt, probability = TRUE)
x <- 140:190
y <- dnorm(x = x, mean = fhgtmean, sd = fhgtsd)
lines(x = x, y = y, col = "blue")

After plotting the density histogram with the first command, we create the x- and y-coordinates for the
normal curve. We chose the x range as 140 to 190 in order to span the entire range of fheight. To create
y, we use dnorm to calculate the density of each of those x-values in a distribution that is normal with
mean fhgtmean and standard deviation fhgtsd. The final command draws a curve on the existing plot (the
density histogram) by connecting each of the points specified by x and y. The argument col simply sets the
color for the line to be drawn. If we left it out, the line would be drawn in black.

The top of the curve is cut off because the limits of the x- and y-axes are set to best fit the histogram. To
adjust the y-axis you can add a third argument to the histogram function: ylim = c(0, 0.06) – go back
to your code and add this.
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Exercise 2: Based on the this plot, does it appear that the data follow a nearly normal distribution?

4.4 Evaluating the normal distribution
Eyeballing the shape of the histogram is one way to determine if the data appear to be nearly normally
distributed, but it can be frustrating to decide just how close the histogram is to the curve. An alternative ap-
proach involves constructing a normal probability plot, also called a normal Q-Q plot for “quantile-quantile”.
qqnorm(fdims$hgt)
qqline(fdims$hgt)

A data set that is nearly normal will result in a probability plot where the points closely follow the line.
Any deviations from normality leads to deviations of these points from the line. The plot for female heights
shows points that tend to follow the line but with some errant points towards the tails. We’re left with the
same problem that we encountered with the histogram above: how close is close enough?

A useful way to address this question is to rephrase it as: what do probability plots look like for data that I
know came from a normal distribution? We can answer this by simulating data from a normal distribution
using rnorm.
sim_norm <- rnorm(n = length(fdims$hgt), mean = fhgtmean, sd = fhgtsd)

The first argument indicates how many numbers you’d like to generate, which we specify to be the same
number of heights in the fdims data set using the length function. The last two arguments determine the
mean and standard deviation of the normal distribution from which the simulated sample will be generated.
We can take a look at the shape of our simulated data set, sim_norm, as well as its normal probability plot.

3. Make a normal probability plot of sim_norm. Do all of the points fall on the line? How does this plot
compare to the probability plot for the real data?

Even better than comparing the original plot to a single plot generated from a normal distribution is to
compare it to many more plots using the following function. It may be helpful to click the zoom button in
the plot window.
qqnormsim(fdims$hgt)

Exercise 4: Does the normal probability plot for fdims$hgt look similar to the plots created for the
simulated data? That is, do plots provide evidence that the female heights are nearly normal?

Exercise 5:Using the same technique, determine whether or not female weights appear to come from a
normal distribution.

4.5 Normal probabilities
Okay, so now you have a slew of tools to judge whether or not a variable is normally distributed. Why
should we care?

It turns out that statisticians know a lot about the normal distribution. Once we decide that a random
variable is approximately normal, we can answer all sorts of questions about that variable related to prob-
ability. Take, for example, the question of, “What is the probability that a randomly chosen young adult
female is taller than 6 feet (about 182 cm)?” (The study that published this data set is clear to
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point out that the sample was not random and therefore inference to a general population is
not suggested. We do so here only as an exercise.)

If we assume that female heights are normally distributed (a very close approximation is also okay), we can
find this probability by calculating a Z score and consulting a Z table (also called a normal probability table).
In R, this is done in one step with the function pnorm.
1 - pnorm(q = 182, mean = fhgtmean, sd = fhgtsd)

Note that the function pnorm gives the area under the normal curve below a given value, q, with a given
mean and standard deviation. Since we’re interested in the probability that someone is taller than 182 cm,
we have to take one minus that probability.

Assuming a normal distribution has allowed us to calculate a theoretical probability. If we want to calculate
the probability empirically, we simply need to determine how many observations fall above 182 then divide
this number by the total sample size.
sum(fdims$hgt > 182) / length(fdims$hgt)

Although the probabilities are not exactly the same, they are reasonably close. The closer that your distri-
bution is to being normal, the more accurate the theoretical probabilities will be.

Exercise 6: Write out two probability questions that you would like to answer; one regarding female
heights and one regarding female weights. Calculate the those probabilities using both the theoretical
normal distribution as well as the empirical distribution (four probabilities in all). Which variable, height
or weight, had a closer agreement between the two methods?

4.6 On Your Own
• Now let’s consider some of the other variables in the body dimensions data set. Using the figures at

the end of the exercises, match the histogram to its normal probability plot. All of the variables have
been standardized (first subtract the mean, then divide by the standard deviation), so the units won’t
be of any help. If you are uncertain based on these figures, generate the plots in R to check.

a. The histogram for female biiliac (pelvic) diameter (bii.di) belongs to normal probability plot letter
____.

b. The histogram for female elbow diameter (elb.di) belongs to normal probability plot letter ____.

c. The histogram for general age (age) belongs to normal probability plot letter ____.

d. The histogram for female chest depth (che.de) belongs to normal probability plot letter ____.

• Note that normal probability plot D has a slight stepwise pattern. Why do you think this is the case?

• As you can see, normal probability plots can be used both to assess normality and visualize skewness.
Make a normal probability plot for female knee diameter (kne.di). Based on this normal probability
plot, is this variable left skewed, symmetric, or right skewed? Use a histogram to confirm your findings.
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Figure 4.1: HistQMatch
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Chapter 5

Foundations for Statistical Inference -
Sampling Distributions

This lab is structured to guide you through an organized process such that you could easily organize your
code with comments — meaning your R script — into a lab report. I would suggest getting into the habit of
writing an organized and commented R script that completes the tasks and answers the questions provided
in the lab — including in the Own Your Own section.

5.1 Getting started
In this lab, we investigate the ways in which the statistics from a random sample of data can serve as point
estimates for population parameters. We’re interested in formulating a sampling distribution of our estimate
in order to learn about the properties of the estimate, such as its distribution.

5.2 The data
We consider real estate data from the city of Ames, Iowa. The details of every real estate transaction in
Ames is recorded by the City Assessor’s office. Our particular focus for this lab will be all residential home
sales in Ames between 2006 and 2010. This collection represents our population of interest. In this lab we
would like to learn about these home sales by taking smaller samples from the full population. Let’s load
the data.
download.file("http://www.openintro.org/stat/data/ames.RData", destfile = "ames.RData")
load("ames.RData")

We see that there are quite a few variables in the data set, enough to do a very in-depth analysis. For this
lab, we’ll restrict our attention to just two of the variables: the above ground living area of the house in
square feet (Gr.Liv.Area) and the sale price (SalePrice). To save some effort throughout the lab, create
two variables with short names that represent these two variables.
area <- ames$Gr.Liv.Area
price <- ames$SalePrice

Let’s look at the distribution of area in our population of home sales by calculating a few summary statistics
and making a histogram.
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summary(area)
hist(area)
boxplot(area,horizontal = TRUE)

Exercise 1: Describe this population distribution.

5.3 The unknown sampling distribution
In this lab we have access to the entire population, but this is rarely the case in real life. Gathering
information on an entire population is often extremely costly or impossible. Because of this, we often take
a sample of the population and use that to understand the properties of the population.

If we were interested in estimating the mean living area in Ames based on a sample, we can use the following
command to survey the population.
samp1 <- sample(area, 50)

This command collects a simple random sample of size 50 from the vector area, which is assigned to samp1.
This is like going into the City Assessor’s database and pulling up the files on 50 random home sales.Working
with these 50 files would be considerably simpler than working with all 2930 home sales.

Exercise 2: Describe the distribution of this sample. How does it compare to the distribution of the
population?

If we’re interested in estimating the average living area in homes in Ames using the sample, our best single
guess is the sample mean.
mean(samp1)

Depending on which 50 homes you selected, your estimate could be a bit above or a bit below the true
population mean of 1499.69 square feet. In general, though, the sample mean turns out to be a pretty good
estimate of the average living area, and we were able to get it by sampling less than 3% of the population.

Exercise 3: Take a second sample, also of size 50, and call it samp2. How does the mean of samp2 compare
with the mean of samp1? Suppose we took two more samples, one of size 100 and one of size 1000. Which
would you think would provide a more accurate estimate of the population mean?

Not surprisingly, every time we take another random sample, we get a different sample mean. It’s useful to
get a sense of just how much variability we should expect when estimating the population mean this way.
The distribution of sample means, called the sampling distribution, can help us understand this variability.
In this lab, because we have access to the population, we can build up the sampling distribution for the
sample mean by repeating the above steps many times. Here we will generate 5000 samples and compute
the sample mean of each.
sample_means50 <- rep(NA, 5000)

for(i in 1:5000){
samp <- sample(area, 50)
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sample_means50[i] <- mean(samp)
}

hist(sample_means50)

If you would like to adjust the bin width of your histogram to show a little more detail, you can do so by
changing the breaks argument.
hist(sample_means50, breaks = 25)

Here we use R to take 5000 samples of size 50 from the population, calculate the mean of each sample, and
store each result in a vector called sample_means50. On the next page, we’ll review how this set of code
works.

Exercise 4: How many elements are there in sample_means50? Describe the sampling distribution, and
be sure to specifically note its center. Would you expect the distribution to change if we instead collected
50,000 sample means?

5.4 Interlude: The for loop
Let’s take a break from the statistics for a moment to let that last block of code sink in. You have just run
your first for loop, a cornerstone of computer programming. The idea behind the for loop is iteration: it
allows you to execute code as many times as you want without having to type out every iteration. In the
case above, we wanted to iterate the two lines of code inside the curly braces that take a random sample
of size 50 from area then save the mean of that sample into the sample_means50 vector. Without the for
loop, this would be painful:
sample_means50 <- rep(NA, 5000)

samp <- sample(area, 50)
sample_means50[1] <- mean(samp)

samp <- sample(area, 50)
sample_means50[2] <- mean(samp)

samp <- sample(area, 50)
sample_means50[3] <- mean(samp)

samp <- sample(area, 50)
sample_means50[4] <- mean(samp)

and so on…

With the for loop, these thousands of lines of code are compressed into a handful of lines. We’ve added one
extra line to the code below, which prints the variable i during each iteration of the for loop. Run this
code.
sample_means50 <- rep(NA, 5000)

for(i in 1:5000){
samp <- sample(area, 50)
sample_means50[i] <- mean(samp)
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print(i)
}

Let’s consider this code line by line to figure out what it does. In the first line we initialized a vector. In this
case, we created a vector of 5000 zeros called sample_means50. This vector will will store values generated
within the for loop.

The second line calls the for loop itself. The syntax can be loosely read as, “for every element i from 1
to 5000, run the following lines of code”. You can think of i as the counter that keeps track of which loop
you’re on. Therefore, more precisely, the loop will run once when i = 1, then once when i = 2, and so on
up to i = 5000.

The body of the for loop is the part inside the curly braces, and this set of code is run for each value of i.
Here, on every loop, we take a random sample of size 50 from area, take its mean, and store it as the ith
element of sample_means50.

In order to display that this is really happening, we asked R to print i at each iteration. This line of code
is optional and is only used for displaying what’s going on while the for loop is running.

The for loop allows us to not just run the code 5000 times, but to neatly package the results, element by
element, into the empty vector that we initialized at the outset.

Exercise 5: To make sure you understand what you’ve done in this loop, try running a smaller version.
Initialize a vector of 100 zeros called sample_means_small. Run a loop that takes a sample of size 50 from
area and stores the sample mean in sample_means_small, but only iterate from 1 to 100. Print the output
to your screen (type sample_means_small into the console and press enter). How many elements are there
in this object called sample_means_small? What does each element represent?

5.5 Sample size and the sampling distribution
Mechanics aside, let’s return to the reason we used a for loop: to compute a sampling distribution, specifi-
cally, this one.
hist(sample_means50)

The sampling distribution that we computed tells us much about estimating the average living
area in homes in Ames. Because the sample mean is an unbiased estimator, the sampling
distribution is centered at the true average living area of the the population, and the spread of
the sampling distribution indicates how much variability is induced by sampling only 50 home
sales.

To get a sense of the effect that sample size has on our distribution, let’s build up two more sampling
distributions: one based on a sample size of 10 and another based on a sample size of 100.
sample_means10 <- rep(NA, 5000)
sample_means100 <- rep(NA, 5000)

for(i in 1:5000){
samp <- sample(area, 10)
sample_means10[i] <- mean(samp)
samp <- sample(area, 100)
sample_means100[i] <- mean(samp)

}
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Here we’re able to use a single for loop to build two distributions by adding additional lines inside the curly
braces. Don’t worry about the fact that samp is used for the name of two different objects. In the second
command of the for loop, the mean of samp is saved to the relevant place in the vector sample_means10.
With the mean saved, we’re now free to overwrite the object samp with a new sample, this time of size 100.
In general, anytime you create an object using a name that is already in use, the old object will get replaced
with the new one.

To see the effect that different sample sizes have on the sampling distribution, plot the three distributions
on top of one another.
par(mfrow = c(3, 1))

xlimits <- range(sample_means10)

hist(sample_means10, breaks = 20, xlim = xlimits)
hist(sample_means50, breaks = 20, xlim = xlimits)
hist(sample_means100, breaks = 20, xlim = xlimits)

The first command specifies that you’d like to divide the plotting area into 3 rows and 1 column of plots (to
return to the default setting of plotting one at a time, use par(mfrow = c(1, 1))). The breaks argument
specifies the number of bins used in constructing the histogram. The xlim argument specifies the range of
the x-axis of the histogram, and by setting it equal to xlimits for each histogram, we ensure that all three
histograms will be plotted with the same limits on the x-axis.

Exercise 6: When the sample size is larger, what happens to the center? What about the spread?

5.6 On your own
So far, we have only focused on estimating the mean living area in homes in Ames. Now you’ll try to estimate
the mean home price.

• Take a random sample of size 50 from price. Using this sample, what is your best point estimate of
the population mean?

• Since you have access to the population, simulate the sampling distribution for x̄price by taking 5000
samples from the population of size 50 and computing 5000 sample means. Store these means in a
vector called sample_means50. Plot the data, then describe the shape of this sampling distribution.
Based on this sampling distribution, what would you guess the mean home price of the population to
be? Finally, calculate and report the population mean.

• Change your sample size from 50 to 150, then compute the sampling distribution using the same
method as above, and store these means in a new vector called sample_means150. Describe the shape
of this sampling distribution, and compare it to the sampling distribution for a sample size of 50. Based
on this sampling distribution, what would you guess to be the mean sale price of homes in Ames?

• Of the sampling distributions from 2 and 3, which has a smaller spread? If we’re concerned with
making estimates that are more often close to the true value, would we prefer a distribution with a
large or small spread?



42 CHAPTER 5. FOUNDATIONS FOR STATISTICAL INFERENCE - SAMPLING DISTRIBUTIONS



Chapter 6

Confidence Intervals - Foundations for
Statistical Inference

This lab is structured to guide you through an organized process such that you could easily organize your
code with comments — meaning your R script — into a lab report. I would suggest getting into the habit of
writing an organized and commented R script that completes the tasks and answers the questions provided
in the lab – including in the Own Your Own section.

6.1 Sampling from Ames, Iowa
If you have access to data on an entire population, say the size of every house in Ames, Iowa, it’s straight
forward to answer questions like, “How big is the typical house in Ames?” and “How much variation is
there in sizes of houses?”. If you have access to only a sample of the population, as is often the case, the
task becomes more complicated. What is your best guess for the typical size if you only know the sizes of
several dozen houses? This sort of situation requires that you use your sample to make inference on what
your population looks like.

6.2 The data
In the previous lab, “Sampling Distributions”, we looked at the population data of houses from Ames, Iowa.
Let’s start by loading that data set.
download.file("http://www.openintro.org/stat/data/ames.RData", destfile = "ames.RData")
load("ames.RData")

In this lab we’ll start with a simple random sample of size 60 from the population. Specifically, this is a
simple random sample of size 60. Note that the data set has information on many housing variables, but for
the first portion of the lab we’ll focus on the size of the house, represented by the variable Gr.Liv.Area.
population <- ames$Gr.Liv.Area
samp <- sample(population, 60)

Exercise 1: Describe the distribution of your sample. What would you say is the “typical” size within your
sample? Also state precisely what you interpreted “typical” to mean.
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Exercise 2: Would you expect another student’s distribution to be identical to yours? Would you expect
it to be similar? Why or why not?

6.3 Confidence intervals
One of the most common ways to describe the typical or central value of a distribution is to use the mean.
In this case we can calculate the mean of the sample using,
sample_mean <- mean(samp)

Return for a moment to the question that first motivated this lab: based on this sample, what can we infer
about the population? Based only on this single sample, the best estimate of the average living area of
houses sold in Ames would be the sample mean, usually denoted as x̄ (here we’re calling it sample_mean).
That serves as a good point estimate but it would be useful to also communicate how uncertain we are of
that estimate. This can be captured by using a confidence interval.

We can calculate a 95% confidence interval for a sample mean by adding and subtracting 1.96 standard
errors to the point estimate (See Section 4.2.3 if you are unfamiliar with this formula). Note that the 1.96 is
the result of rounding and we could ues R to find a more precise value which is provided in the code below.
qnorm(0.975) # or
qnorm(0.025) # which is the negative version

Note that if we take 0.975 - 0.025 we get 0.95. Each tail is set to have area 0.025. Usually two decimal places
of accuracy is suffcient when determining the appropriate z∗ value for a given confidence level. Therefore we
will continue using 1.96, but keep the function above in mind when you desire to use a different confidence
level or you need more precision.
se <- sd(samp) / sqrt(60)
lower <- sample_mean - 1.96 * se
upper <- sample_mean + 1.96 * se
c(lower, upper)

This is an important inference that we’ve just made: even though we don’t know what the full population
looks like, we’re 95% confident that the true average size of houses in Ames lies between the values lower
and upper. There are a few conditions that must be met for this interval to be valid.

Exercise 3: For the confidence interval to be valid, the sample mean must be normally distributed and
have standard error s/

√
n. What conditions must be met for this to be true?

6.4 Confidence levels

Exercise 4: What does “95% confidence” mean?

In this case we have the luxury of knowing the true population mean since we have data on the entire
population. This value can be calculated using the following command:
mean(population)
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Exercise 5:Does your confidence interval capture the true average size of houses in Ames? If you are working
on this lab in a classroom, does your neighbor’s interval capture this value?

Exercise 6: Each student in your class should have gotten a slightly different confidence interval. What
proportion of those intervals would you expect to capture the true population mean? Why? If you are
working in this lab in a classroom, collect data on the intervals created by other students in the class and
calculate the proportion of intervals that capture the true population mean.

Using R, we’re going to recreate many samples to learn more about how sample means and confidence
intervals vary from one sample to another. Loops come in handy here (If you are unfamiliar with loops,
review the Foundations for Statistical Inference (Lab 04)).

Here is the rough outline:

• Obtain a random sample.
• Calculate and store the sample’s mean and standard deviation.
• Repeat steps (1) and (2) 500 times.
• Use these stored statistics to calculate many confidence intervals.

But before we do all of this, we need to first create empty vectors where we can save the means and standard
deviations that will be calculated from each sample. And while we’re at it, let’s also store the desired sample
size as n.
samp_mean <- rep(NA, 500)
samp_sd <- rep(NA, 500)
n <- 60

Now we’re ready for the loop where we calculate the means and standard deviations of 500 random samples.
for(i in 1:500){
samp <- sample(population, n) # obtain a sample of size n = 60 from the population
samp_mean[i] <- mean(samp) # save sample mean in ith element of samp_mean
samp_sd[i] <- sd(samp) # save sample sd in ith element of samp_sd

}

Lastly, we construct the confidence intervals.
lower_vector <- samp_mean - 1.96 * samp_sd / sqrt(n)
upper_vector <- samp_mean + 1.96 * samp_sd / sqrt(n)

Lower bounds of these 500 confidence intervals are stored in lower_vector, and the upper bounds are in
upper_vector. Let’s view the first interval.
c(lower_vector[1], upper_vector[1])

6.5 On your own
• Using the function plot_ci() (which was downloaded with the data set), we are able to plot the

first fifity 95% confidence intervals of our 500. What proportion of the 50 plotted confidence intervals
include the true population mean? Is this proportion exactly equal to the confidence level? If not,
explain why. Devise and implement a process to calculate the number (and proportion) of confidence
intervals that include the true population for all 500 95% confidence intervals - you don’t want to have
to plot and count by hand.
plot_ci(lower_vector, upper_vector, mean(population))
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• Suppose we want 90% confidence intervals instead of 95% confidence intervals. What is the appropriate
critical value?

• Construct 500 90% confidence intervals. You do not need to obtain new samples, simply calculate new
intervals based on the sample means and standard deviations you have already collected. Using the
plot_ci function, plot the first 50 90% confidence intervals and calculate the proportion of intervals
that include the true population mean. How does this percentage compare to the confidence level
selected for the intervals? Using the method which you implemented in question 1 of the On Your
Own section, determine the number (and proportion) of the 500 randomly generated 90% confidence
intervals that include the true population mean.
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Inference for Numerical Data

The lab is structured to guide you through an organized process such that you could easily organize your
code with comments – meaning your R script – into a lab report. I would suggest getting into the habit of
writing an organized and commented R script that completes the tasks and answers the questions provided
in the lab – including in the Own Your Own section.

7.1 Overview
We will be conducting hypothesis tests (HTs) and constructing confidence intervals (CIs) for means and
difference of means throughout this lab. We will calculate them by “hand” and through the use of a built in
function in R called t.test(), which is an extremely useful and flexible function when given the raw sample.
Sometimes we are only given access to sample statistics (e.g. x̄, sx, n), which necessitates that we perform
calculations by “hand” – the function t.test() requires the raw data.

7.2 North Carolina births
In 2004, the state of North Carolina released a large data set containing information on all births recorded
in their state. This data set is useful to researchers studying the relation between habits and practices of
expectant mothers and the birth of their children. We will work with a random sample of observations from
this data set.

7.3 Exploratory analysis
Load the nc data set into our workspace.
download.file("http://www.openintro.org/stat/data/nc.RData", destfile = "nc.RData")
load("nc.RData")

We observations of 13 different variables, some categorical and some numerical. The meaning of each variable
is as follows:

variable description
fage father’s age in

years.

47



48 CHAPTER 7. INFERENCE FOR NUMERICAL DATA

variable description
mage mother’s age in

years.
mature maturity status

of mother.
weeks length of

pregnancy in
weeks.

premie whether the
birth was
classified as
premature
(premie) or
full-term.

visits number of
hospital visits
during
pregnancy.

marital whether mother
is married or
not married at
birth.

gained weight gained by
mother during
pregnancy in
pounds.

weight weight of the
baby at birth in
pounds.

lowbirthweight whether baby
was classified as
low birthweight
(low) or not (not
low).

gender gender of the
baby, female or
male.

habit status of the
mother as a
nonsmoker or a
smoker.

whitemom whether mom is
white or not
white.

Exercise 1: What are the cases in this data set? How many cases are there in our sample?

As a first step in the analysis, we should consider summaries of the data. This can be done using the summary
command:
summary(nc)

As you review the variable summaries, consider which variables are categorical and which are numerical. For
numerical variables, are there outliers? If you aren’t sure or want to take a closer look at the data, make a
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graph.

Suppose we want to investigate the typical age for mothers and fathers in North Carolina. Begin by con-
structing histograms, box plots, and calculating summary statistics.
# Mother's age
hist(nc$mage)
boxplot(nc$mage, horizontal = TRUE)
summary(nc$mage)
sd(nc$mage)
IQR(nc$mage)

# Father's age
hist(nc$fage)
boxplot(nc$fage, horizontal = TRUE)
summary(nc$fage)
sd(nc$fage)
IQR(nc$fage)

Note that sd(nc$fage) or IQR(nc$fage) do not return valid output/values. The summary output indicated
that there were 171 births where a father’s age was missing or not reported. By default most R function will
not return valid output when data is missing. This can be fixed by adding the argument na.rm = TRUE in
the function call – see below.
# Father's age continued
sd(nc$fage, na.rm = TRUE)
IQR(nc$fage, na.rm = TRUE)

Suppose we want to test the hypothesis that the mean age for women giving birth in North Carolina is 26.5
years. Calculating by “hand”:
# Sample Data
xbar <- mean(nc$mage)
std <- sd(nc$mage)
samp_size <- length(nc$mage)

# Hypothesis Test -- Calculating p-value
dof <- samp_size - 1
std_err <- std/sqrt(samp_size)
test_stat <- (xbar - 26.5)/std_err
p_value <- 2*pt(-abs(test_stat),df = dof)
p_value

# Constructing 95% CI for the mean
t_star <- qt(p = .975, df = dof)
LB <- xbar - t_star*std_err
UB <- xbar + t_star*std_err
c(LB,UB)

Since our p-value is less than significance level α (0.05), we have sufficient evidence to reject that the mean
age of women giving birth in North Carolina is 26.5 years old. Note that 26.5 is not in the 95% confidence
interval for the mean age of birthing women in NC. Two-tailed hypothesis tests for the mean with significance
level α are logically equivalent to 100(1 − α)% confidence interval for the mean – this is a big deal.

Let’s make use of the t.test() function now. The function has several inputs that you should become
familiar with and work to understand.
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# Mother's mean age -- HT and 95% CI
t.test(x = nc$mage, alternative = "two.sided", mu = 26.5, conf.level = 0.95)

Exercise 2: Suppose now we want test whether the mean age of NC fathers is 30 years. Use
α = 0.01. Also construct a 99% confidence interval for the mean. Calculate by “hand” and
by using t.test(). Hint: When calculating by “hand”, missing values can be an issue so first
extract and store the useful observations as shown below. The t.test() takes care of missingness
automatically.

# Extract and store useful data
keep_condition <- !is.na(nc$fage)
f_age <- nc$fage[keep_condition]

Suppose a researcher wants to test the hypothesis that in NC the mean age of fathers is different than the
mean age of mothers at birth – assume an α = 0.01. This is a test for the difference in two population means,
which requires us to ask whether the data for the two groups (mothers and fathers) is paired or not. Clearly,
the data is paired since each mother and father can be reasonably matched together. First by “hand”,
# Paired -- only need the differences in age
age_diff <- nc$mage - nc$fage
summary(age_diff)

# Diff. sample statistics -- note their are missing values
xbar <- mean(age_diff, na.rm = TRUE)
std <- sd(age_diff, na.rm = TRUE)
samp_size <- sum(!is.na(age_diff))

# Hypothesis Test -- Calculating p-value
dof <- samp_size - 1
std_err <- std/sqrt(samp_size)
test_stat <- (xbar - 0)/std_err
p_value <- 2*pt(-abs(test_stat),df = dof)
p_value

# Constructing 99% CI for the mean
t_star <- qt(p = .995, df = dof)
LB <- xbar - t_star*std_err
UB <- xbar + t_star*std_err
c(LB,UB)

Using t.test() – a few coding options.
# Option 1: Calculate the differences externally and feed
# them into the t.test function
t.test(x = age_diff, alternative = "two.sided", mu = 0, conf.level = 0.99)

# Option 2: Let the function calculate the differences by
# setting paired = TRUE
t.test(x = nc$mage, y = nc$fage, alternative = "two.sided", mu = 0, paired = TRUE)

Now consider the possible relationship between a mother’s smoking habit and the weight of her baby. Plotting
the data is a useful first step because it helps us quickly visualize trends, identify strong associations, and
develop research questions.

Exercise 3: Make a side-by-side box plot of habit and weight. What does the plot highlight
about the relationship between these two variables?
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The box plots show how the medians of the two distributions compare, but we can also compare the means
of the distributions using the following function to split the weight variable into the habit groups, then
take the mean of each using the mean function.
by(nc$weight, nc$habit, mean)

There is an observed difference, but is this difference statistically significant? In order to answer this question
we will conduct a hypothesis test.

Exercise 4: Check if the conditions necessary for inference are satisfied. Note that you will need
to obtain sample sizes to check the conditions. You can compute the group size using the same
by command above but replacing mean with length.

Exercise 5: Write the hypotheses for testing if the average weights of babies born to smoking
and non-smoking mothers are different.

Again, this a hypothesis test for a difference of two means, but in this case the data is not paired – there is
no reasonable way of matching members from one group (smokers) to the other (non-smokers). Are the two
groups independent from one another? There is no reason to believe that the groups are dependent since
the records were randomly sampled. First by “hand”,
# Sample statistics for baby weights for smoking mothers
grp1 <- nc$weight[nc$habit == "smoker"]
xbar1 <- mean(grp1, na.rm = TRUE)
std1 <- sd(grp1, na.rm = TRUE)
samp_size1 <- sum(!is.na(grp1))

# Sample statistics for baby weights for nonsmoking mothers
grp2 <- nc$weight[nc$habit == "nonsmoker"]
xbar2 <- mean(grp2, na.rm = TRUE)
std2 <- sd(grp2, na.rm = TRUE)
samp_size2 <- sum(!is.na(grp2))

# Hypothesis Test -- Calculating p-value
dof <- min(c(samp_size1,samp_size2)) - 1
std_err <- sqrt(std1^2/samp_size1 + std2^2/samp_size2)
test_stat <- (xbar1-xbar2 - 0)/std_err
p_value <- 2*pt(-abs(test_stat),df = dof)
p_value

# Constructing 95% CI for the mean
t_star <- qt(p = .975, df = dof)
LB <- (xbar1 - xbar2) - t_star*std_err
UB <- (xbar1 - xbar2) + t_star*std_err
c(LB,UB)

Using t.test().
# Note taht grp1 and grp2 come from above
t.test(x = grp1, y = grp2, alternative = "two.sided", mu = 0, var.equal = FALSE, conf.level = .95)

Notice that the by “hand” calculations and the results from t.test() do not match. The
difference is caused by the use of different degrees of freedom calculations. The software is utilizing the
exact calculation for the degrees of freedom while we are utilizing a conservative estimate to the degrees of
freedom.

Also note var.equal = is an indicator/flag for whether we are willing to make the assumption that the two
groups have equal variance (i.e. spread/variability). In most cases it is safer not to make this assumption,
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thus the default is FALSE. Although, some software and researchers will make this assumption. Set var.equal
= TRUE and see what happens. What affect did this assumption have on the p-value and confidence
interval?

7.4 On your own
• Calculate a 95% confidence interval for the average length of pregnancies (weeks) and interpret it in

context.

• Calculate a new confidence interval for the same parameter at the 90% confidence level.

• Conduct a hypothesis test evaluating whether the average weight gained by younger mothers is different
than the average weight gained by mature mothers.

• Now, a non-inference task: Determine the age cutoff for younger and mature mothers. Use a method
of your choice, and explain how your method works.

• Pick a pair of numerical and categorical variables and come up with a research question evaluating the
relationship between these variables. Formulate the question in a way that it can be answered using
a hypothesis test and/or a confidence interval. Answer your question using the t.test() function,
report the statistical results, and also provide an explanation in plain language.
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Inference for Categorical Data

This lab is structured to guide you through an organized process such that you could easily organize your
code with comments — meaning your R script — into a lab report. I would suggest getting into the habit of
writing an organized and commented R script that completes the tasks and answers the questions provided
in the lab — including in the Own Your Own section.

8.0.1 Getting Started
In August of 2012, news outlets ranging from the Washington Post to the Huffington Post ran a story about
the rise of atheism in America. The source for the story was a poll that asked people, “Irrespective of whether
you attend a place of worship or not, would you say you are a religious person, not a religious person or a
convinced atheist?” This type of question, which asks people to classify themselves in one way or another,
is common in polling and generates categorical data. In this lab we take a look at the atheism survey and
explore what’s at play when making inference about population proportions using categorical data.

8.1 The survey
To download a copy of the press release for the poll, conducted by WIN-Gallup International, click on the
following link:

Download the Press Release

Take a moment to review the report, then address the following questions.

Exercise 1: In the first paragraph, several key findings are reported. Do these percentages appear to be
sample statistics (derived from the sample data) or population parameters?

Exercise 2: The title of the report is “Global Index of Religiosity and Atheism”. To generalize the report’s
findings to the global human population, what must we assume about the sampling method? Does that
seem like a reasonable assumption?

8.2 The data
Turn your attention to Table 6 (pages 15 and 16), which reports the sample size and response percentages
for all 57 countries. While this is a useful format to summarize the data, we will base our analysis on the
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http://www.washingtonpost.com/national/on-faith/poll-shows-atheism-on-the-rise-in-the-us/2012/08/13/90020fd6-e57d-11e1-9739-eef99c5fb285_story.html
http://www.huffingtonpost.com/2012/08/14/atheism-rise-religiosity-decline-in-america_n_1777031.html
https://github.com/nulib/kuyper-stat202/raw/master/assets/support_doc/Global_INDEX_of_Religiosity_and_Atheism_PR_6.pdf
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original data set of individual responses to the survey. Load this dataset into R with the following command.
download.file("http://www.openintro.org/stat/data/atheism.RData", destfile = "atheism.RData")
load("atheism.RData")

Exercise 3: What does each row of Table 6 correspond to? What does each row of atheism correspond to?

To investigate the link between these two ways of organizing this data, take a look at the estimated proportion
of atheists in the United States. Towards the bottom of Table 6, we see that this is 5%. We should be able
to come to the same number using the atheism data.

Exercise 4: Using the command below, create a new dataframe called us12 that contains only the rows
in atheism associated with respondents to the 2012 survey from the United States. Next, calculate the
proportion of atheist responses. Does it agree with the percentage in Table 6? If not, why?

us12 <- subset(atheism, nationality == "United States" & year == "2012")

8.3 Inference on proportions
As was hinted at in Exercise 1, Table 6 provides statistics, that is, calculations made from the sample of 51,927
people. What we’d like, though, is insight into the population parameters. You answer the question, “What
proportion of people in your sample reported being atheists?” with a statistic; while the question “What
proportion of people on earth would report being atheists” is answered with an estimate of the parameter.

The inferential tools for estimating population proportion are analogous to those used for means in the last
chapter: the confidence interval and the hypothesis test.

Exercise 5: Write out the conditions for inference to construct a 95% confidence interval for the
proportion of atheists in the United States in 2012. Are you confident all conditions are met?

If the conditions for inference are reasonable, we can calculate the standard error and construct the interval
by “hand” as outlined in our book. Note that since the goal is to construct an interval estimate for a
proportion, it’s necessary to specify what constitutes a “success”, which here is a response of "atheist".
# First we need to identify the successes and failures
# We can find out what our options with the following
levels(us12$response)

# Since we are looking for atheist we define a success as
# "atheist" and a failure as not atheist (regarless of other
# categories)
# -- code returns TRUE for atheist and FALSE otherwise
atheist_yes_no <- us12$response == "atheist"

# Checking how many atheist and non-atheist are in the sample
# Also a check to verify we have at least 10 successes and failures
table(atheist_yes_no)

# We need to calculate p_hat (number of success/total observations)
# Option 1 (My preferred option - most efficient)
p_hat <- mean(atheist_yes_no)



8.4. HOW DOES THE PROPORTION AFFECT THE MARGIN OF ERROR? 55

p_hat
# Option 2
sum(atheist_yes_no)/length(atheist_yes_no)

# Construct the 95% CI
std_err <- sqrt(p_hat*(1-p_hat)/length(atheist_yes_no))
z_star <- qnorm(.975)
lb <- p_hat - z_star*std_err
ub <- p_hat + z_star*std_err
c(lb,ub)

Although formal confidence intervals and hypothesis tests don’t show up in the report, suggestions of inference
appear at the bottom of page 7: “In general, the error margin for surveys of this kind is ± 3-5% at 95%
confidence”.

Exercise 6: Based on the work above, what is the margin of error for the estimate of the proportion of
atheists in US in 2012?

Exercise 7: Calculate confidence intervals for the proportion of atheists in 2012 in two other countries of
your choice, and report the associated margins of error. Be sure to note whether the conditions for inference
are met. It may be helpful to create new data sets for each of the two countries first, and then use these
data sets during calculations.

8.4 How does the proportion affect the margin of error?
Imagine you’ve set out to survey 1000 people on two questions: are you female? and are you left-handed?
Since both of these sample proportions were calculated from the same sample size, they should have the
same margin of error, right? Wrong! While the margin of error does change with sample size, it is also
affected by the proportion.

Think back to the formula for the standard error: SE =
√

p(1 − p)/n. This is then used in the formula
for the margin of error for a 95% confidence interval: ME = 1.96 × SE = 1.96 ×

√
p(1 − p)/n. Since the

population proportion p is in this ME formula, it should make sense that the margin of error is in some way
dependent on the population proportion. We can visualize this relationship by creating a plot of ME vs. p.

The first step is to make a vector p that is a sequence from 0 to 1 with each number separated by 0.01.
We can then create a vector of the margin of error (me) associated with each of these values of p using the
familiar approximate formula (ME = 2 × SE). Lastly, we plot the two vectors against each other to reveal
their relationship.
n <- 1000
p <- seq(0, 1, 0.01)
me <- 2 * sqrt(p * (1 - p)/n)
plot(me ~ p, ylab = "Margin of Error", xlab = "Population Proportion")

8. Describe the relationship between p and me.

8.5 Success-failure condition
The textbook emphasizes that you must always check conditions before making inference. For inference on
proportions, the sample proportion can be assumed to be nearly normal if it is based upon a random sample
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of independent observations and if both np ≥ 10 and n(1 − p) ≥ 10. This rule of thumb is easy enough to
follow, but it makes one wonder: what’s so special about the number 10?

The short answer is: nothing. You could argue that we would be fine with 9 or that we really should be
using 11. What is the “best” value for such a rule of thumb is, at least to some degree, arbitrary. However,
when np and n(1 − p) reaches 10 the sampling distribution is sufficiently normal to use confidence intervals
and hypothesis tests that are based on that approximation.

We can investigate the interplay between n and p and the shape of the sampling distribution by using
simulations. To start off, we simulate the process of drawing 5000 samples of size 1040 from a population
with a true atheist proportion of 0.1. For each of the 5000 samples we compute p̂ and then plot a histogram
to visualize their distribution.
p <- 0.1
n <- 1040
p_hats <- rep(0, 5000)

for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats[i] <- sum(samp == "atheist")/n

}

hist(p_hats, main = "p = 0.1, n = 1040", xlim = c(0, 0.18))

These commands build up the sampling distribution of p̂ using the familiar for loop. You can read the
sampling procedure for the first line of code inside the for loop as, “take a sample of size n with replacement
from the choices of atheist and non-atheist with probabilities p and 1 − p, respectively.” The second line in
the loop says, “calculate the proportion of atheists in this sample and record this value.” The loop allows us
to repeat this process 5,000 times to build a good representation of the sampling distribution.

Exercise 9: Describe the sampling distribution of sample proportions for n = 1040 and p = 0.1. Be sure
to note the center, spread, and shape. Hint: Remember that R has functions such as mean to calculate
summary statistics.

Exercise 10: Repeat the above simulation three more times but with modified sample sizes and proportions:
for n = 400 and p = 0.1, n = 1040 and p = 0.02, and n = 400 and p = 0.02. Plot all four histograms together
by running the par(mfrow = c(2, 2)) command before creating the histograms. You may need to expand
the plot window to accommodate the larger two-by-two plot. Describe the three new sampling distributions.
Based on these limited plots, how does n appear to affect the distribution of p̂? How does p affect the
sampling distribution?

Once you’re done, you can reset the layout of the plotting window by using the command par(mfrow =
c(1, 1)) command or clicking on “Clear All” above the plotting window (if using RStudio). Note that the
latter will get rid of all your previous plots.

Exercise 11: If you refer to Table 6, you’ll find that Australia has a sample proportion of 0.1 on a sample
size of 1040, and that Ecuador has a sample proportion of 0.02 on 400 subjects. Let’s suppose for this
exercise that these point estimates are actually the truth. Then given the shape of their respective sampling
distributions, do you think it is sensible to proceed with inference and report margin of errors, as the report
does? – Checking our condition for at least 10 observed successes and failures.
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8.6 On your own
The question of atheism was asked by WIN-Gallup International in a similar survey that was conducted
in 2005. (We assume here that sample sizes have remained the same - or close enough so it doesn’t really
matter.) Table 4 on page 13 of the report summarizes survey results from 2005 and 2012 for 39 countries.

• Answer the following two questions using confidence intervals calculated by “hand” or by using the
built in functions described in the final section of the lab. As always, write out the hypotheses for any
tests you conduct and outline the status of the conditions for inference.

a. Is there convincing evidence that Spain saw a change in its atheism index between 2005 and 2012?
Hint: Create a new datasets for respondents from Spain for 2005 and 2012. Form confidence intervals
for the true proportion of athiests in both years, and determine whether they overlap.

b. Is there convincing evidence that the United States saw a change in its atheism index between 2005
and 2012?

• If in fact there has been no change in the atheism index in the countries listed in Table 4, in how
many of those countries would you expect to detect a change (at a significance level of 0.05) simply by
chance? Hint: Look in the textbook index under Type 1 error.

• Suppose you’re hired by the local government to estimate the proportion of residents that attend a
religious service on a weekly basis. According to the guidelines, the estimate must have a margin of
error no greater than 1% with 95% confidence. You have no idea what to expect for p. How many
people would you have to sample to ensure that you are within the guidelines? Hint: Refer to your
plot of the relationship between p and margin of error. Do not use the data set to answer this question.

8.7 Options for using built in functions in R: prop.test() &
binom.test()

As mentioned during lecture, the by “hand” calculations represent a great start for conducting inferences
for proportions and difference of proportions (i.e. confidence intervals and hypothesis tests). The methods
presented in the book depend upon the normal approximation to the binomial distribution – thus the reason
for requiring 10 success and 10 failures (Chapter 3). In the case of a 1-sample proportion, the true
distribution is the binomial distribution and we can calculate the exact confidence interval and hypothesis
test p-value using the binom.test() function. Computational limitations made this impractical in the past.
This method is sometimes referred to as the exact test.

Another option is to utilize an alternative approximation method that works just as good and better in some
instances than those presented in the book. This method is known as a goodness-of-fit test which readily
extends to many situations and can be implemented using the prop.test() function.

The code below demonstrates appling these methods/functions to construct a 95% confidence interval for
the proportion of atheists in the United States in 2012 (Exercise 5).
# First we need to identify the successes and failures
# We can find out what our options with the following
levels(us12$response)

# Next we define a success as "atheist" and a failure as not
# being an atheist -- code returns TRUE for atheist and FALSE
# otherwise
atheist_yes_no <- us12$response == "atheist"

# We require the number of successess/atheists
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num_success <- sum(atheist_yes_no)
# We reuire the number of total observations
num_obs <- length(atheist_yes_no)

# Exact Test
binom.test(x = num_success, n = num_obs, alternative = "two.sided")
# Goodness-of-Fit test
prop.test(x = num_success, n = num_obs, alternative = "two.sided",)

These methods, in most cases, do not result in confidence intervals that are symmetic about the point
estimate. This makes defining a margin of error slightly more difficult and beyond the scope of this course.

• Compare and contrast the 95% confidence intervals for the proportion of atheists in the United States
in 2012 constructed using binom.test(), prop.test(), and by “hand” calculations.



Chapter 9

Introduction to Linear Regression

This lab is structured to guide you through an organized process such that you could easily organize your
code with comments — meaning your R script — into a lab report. I would suggest getting into the habit of
writing an organized and commented R script that completes the tasks and answers the questions provided
in the lab — including in the Own Your Own section.

9.1 Batter up (Getting Started)
The movie Moneyball focuses on the “quest for the secret of success in baseball”. It follows a low-budget
team, the Oakland Athletics, who believed that underused statistics, such as a player’s ability to get on
base, betterpredict the ability to score runs than typical statistics like home runs, RBIs (runs batted in),
and batting average. Obtaining players who excelled in these underused statistics turned out to be much
more affordable for the team.

In this lab we’ll be looking at data from all 30 Major League Baseball teams and examining the linear
relationship between runs scored in a season and a number of other player statistics. Our aim will be to
summarize these relationships both graphically and numerically in order to find which variable, if any, helps
us best predict a team’s runs scored in a season.

9.2 The data
Let’s load up the data for the 2011 season.
download.file("http://www.openintro.org/stat/data/mlb11.RData", destfile = "mlb11.RData")
load("mlb11.RData")

In addition to runs scored, there are seven traditionally used variables in the data set: at-bats, hits, home runs,
batting average, strikeouts, stolen bases, and wins. There are also three newer variables: on-base percentage,
slugging percentage, and on-base plus slugging. For the first portion of the analysis we’ll consider the seven
traditional variables. At the end of the lab, you’ll work with the newer variables on your own.

Exercise 1: What type of plot would you use to display the relationship between runs and one of the other
numerical variables? Plot this relationship using the variable at_bats as the predictor. Does the relationship
look linear? If you knew a team’s at_bats, would you be comfortable using a linear model to predict the
number of runs?
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If the relationship looks linear, we can quantify the strength of the relationship with the correlation coefficient.
cor(mlb11$runs, mlb11$at_bats)

9.3 Sum of squared residuals
Think back to the way that we described the distribution of a single variable. Recall that we discussed
characteristics such as center, spread, and shape. It’s also useful to be able to describe the relationship of
two numerical variables, such as runs and at_bats above.

Exercise 2: Looking at your plot from the previous exercise, describe the relationship between these two
variables. Make sure to discuss the form, direction, and strength of the relationship as well as any unusual
observations.

Just as we used the mean and standard deviation to summarize a single variable, we can summarize the
relationship between these two variables by finding the line that best follows their association. Use the
following interactive function to select the line that you think does the best job of going through the cloud
of points.
plot_ss(x = mlb11$at_bats, y = mlb11$runs)

After running this command, you’ll be prompted to click two points on the plot to define a line. Once
you’ve done that, the line you specified will be shown in black and the residuals in blue. Note that there
are 30 residuals, one for each of the 30 observations. Recall that the residuals are the difference between the
observed values and the values predicted by the line:

ei = yi − ŷi

The most common way to do linear regression is to select the line that minimizes the sum of squared residuals.
To visualize the squared residuals, you can rerun the plot command and add the argument showSquares =
TRUE.
plot_ss(x = mlb11$at_bats, y = mlb11$runs, showSquares = TRUE)

Note that the output from the plot_ss function provides you with the slope and intercept of your line as
well as the sum of squares.

Exercise 3: Using plot_ss, choose a line that does a good job of minimizing the sum of squares. Run the
function several times. What was the smallest sum of squares that you got? How does it compare to your
neighbors?

9.4 The linear model
It is rather cumbersome to try to get the correct least squares line, i.e. the line that minimizes the sum of
squared residuals, through trial and error. Instead we can use the lm function in R to fit the linear model
(a.k.a. regression line).
m1 <- lm(runs ~ at_bats, data = mlb11)
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The first argument in the function lm is a formula that takes the form y ~ x. Here it can be read that we
want to make a linear model of runs as a function of at_bats. The second argument specifies that R should
look in the mlb11 data frame to find the runs and at_bats variables.

The output of lm is an object that contains all of the information we need about the linear model that was
just fit. We can access this information using the summary function.
summary(m1)

Let’s consider this output piece by piece. First, the formula used to describe the model is shown at the top.
After the formula you find the five-number summary of the residuals. The “Coefficients” table shown next is
key; its first column displays the linear model’s y-intercept and the coefficient of at_bats. With this table,
we can write down the least squares regression line for the linear model:

r̂uns = −2789.2429 + 0.6305 ∗ (at_bats)

One last piece of information we will discuss from the summary output is the Multiple R-squared, or more
simply, R2. The R2 value represents the proportion of variability in the response variable that is explained
by the explanatory variable. For this model, 37.3% of the variability in runs is explained by at-bats.

Exercise 4: Fit a new model that uses homeruns to predict runs. Using the estimates from the R output,
write the equation of the regression line. What does the slope tell us in the context of the relationship
between success of a team and its home runs?

9.5 Prediction and prediction errors
Let’s create a scatterplot with the least squares line laid on top.
plot(mlb11$runs ~ mlb11$at_bats)
abline(m1)

The function abline plots a line based on its slope and intercept. Here, we used a shortcut by providing the
model m1, which contains both parameter estimates. This line can be used to predict y at any value of x.
When predictions are made for values of x that are beyond the range of the observed data, it is referred to
as extrapolation and is not usually recommended. However, predictions made within the range of the data
are more reliable. They’re also used to compute the residuals.

Exercise 5: If a team manager saw the least squares regression line and not the actual data, how many
runs would he or she predict for a team with 5,578 at-bats? Is this an overestimate or an underestimate,
and by how much? In other words, what is the residual for this prediction?

9.6 Model diagnostics
To assess whether the linear model is reliable, we need to check for (1) linearity, (2) nearly normal residuals,
and (3) constant variability.

Linearity: You already checked if the relationship between runs and at-bats is linear using a scatterplot. We
should also verify this condition with a plot of the residuals vs. at-bats. Recall that any code following a #
is intended to be a comment that helps understand the code but is ignored by R.
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plot(m1$residuals ~ mlb11$at_bats)
abline(h = 0, lty = 3) # adds a horizontal dashed line at y = 0

Exercise 6: Is there any apparent pattern in the residuals plot? What does this indicate about the linearity
of the relationship between runs and at-bats?

Nearly normal residuals: To check this condition, we can look at a histogram
hist(m1$residuals)

or a normal probability plot of the residuals. Consider simulating normal probability plots for an adequate
benchmark for determining suitability of the normality assumption.
qqnorm(m1$residuals)
qqline(m1$residuals) # adds diagonal line to the normal prob plot

Exercise 7: Based on the histogram and the normal probability plot, does the nearly normal residuals
condition appear to be met?

Constant variability: We can check the constant variability assumption by plotting the residuals (standard-
ized) vs the model’s fitted-values. If there should be no clear relationship concerning the disbursement of
points around a horizontal line at 0 (since residuals are scaled), then we conclude that the constant variability
assumption is appropriate.
std_residuals <- scale(m1$residuals) # standardizes residuals
plot(x = m1$fitted.values, y = std_residuals)
abline(h = 0, lty = "dashed") # adds dashed horizontal line

Exercise 8: Based on the plot, does the constant variability condition appear to be met?

9.7 On Your Own
• Choose another traditional variable from mlb11 that you think might be a good predictor of runs.

Produce a scatterplot of the two variables and fit a linear model. At a glance, does there seem to be a
linear relationship?

• How does this relationship compare to the relationship between runs and at_bats? Use the R2 values
from the two model summaries to compare. Does your variable seem to predict runs better than
at_bats? How can you tell?

• Now that you can summarize the linear relationship between two variables, investigate the relationships
between runs and each of the other five traditional variables. Which variable best predicts runs?
Support your conclusion using the graphical and numerical methods we’ve discussed (for the sake of
conciseness, only include output for the best variable, not all five).

• Now examine the three newer variables. These are the statistics used by the author of Moneyball to
predict a teams success. In general, are they more or less effective at predicting runs that the old
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variables? Explain using appropriate graphical and numerical evidence. Of all ten variables we’ve ana-
lyzed, which seems to be the best predictor of runs? Using the limited (or not so limited) information
you know about these baseball statistics, does your result make sense?

• Check the model diagnostics for the regression model with the variable you decided was the best
predictor for runs.



64 CHAPTER 9. INTRODUCTION TO LINEAR REGRESSION



Chapter 10

Multiple Linear Regression

This lab is structured to guide you through an organized process such that you could easily organize your
code with comments — meaning your R script — into a lab report. We would suggest getting into the
habit of writing an organized and commented R script that completes the tasks and answers the questions
provided in the lab — including in the Own Your Own section.

10.1 Getting Started
Recall that we explored simple linear regression by examining baseball data from the 2011 Major League
Baseball (MLB) season. We will also use this data to explore multiple regression. Our inspiration for
exploring this data stems from the movie Moneyball, which focused on the “quest for the secret of success
in baseball”. It follows a low-budget team, the Oakland Athletics, who believed that underused statistics,
such as a player’s ability to get on base, better predict the ability to score runs than typical statistics like
home runs, RBIs (runs batted in), and batting average. Obtaining players who excelled in these underused
statistics turned out to be much more affordable for the team.

In this lab we’ll be looking at data from all 30 Major League Baseball teams and examining the linear
relationship between runs scored in a season and a number of other player statistics. Our aim will be to
find the model that best predicts a team’s runs scored in a season. We also aim to find the model that best
predicts a team’s total wins in a season. The first model would tell us which player statistics we should
pay attention to if we wish to purchase runs and the second model would indicate which player statistics we
should utilize when we wish to purchase wins.

10.2 The data
Let’s load up the data for the 2011 season.
download.file("http://www.openintro.org/stat/data/mlb11.RData", destfile = "mlb11.RData")
load("mlb11.RData")

In addition to runs scored, there are seven traditionally used variables in the data set: at-bats, hits, home runs,
batting average, strikeouts, stolen bases, and wins. There are also three newer variables: on-base percentage,
slugging percentage, and on-base plus slugging. For the first portion of the analysis we’ll consider the seven
traditional variables. At the end of the lab, you’ll work with the newer variables on your own.

We also would like to modify the data so that it easier to work with during model selection. We remove the
variable team from the dataset and store the updated verison in mlb11_wins.
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mlb11_wins <- mlb11[,-1] # since team is in the first column we can us -1 to remove it

Since wins is not a player level statistic - at least for non-pitchers - we do not want to use it when predicting
runs. Therefore we are going to create another modified dataset to utilize when attempting to find the best
model for predicting the total number of runs for a team during a season. The reverse is not an issue when
attempting to predict a team’s number of wins for a season - runs can be used to predict wins.
mlb11_runs <- mlb11_wins[,-8] # since wins is in the 8th column we can us -8 to remove it

As discussed in class there are many ways to go about model selection. We will look at both forward and
backward selection methods that utilize

10.3 The search for the best model
As discussed in class there are many ways to go about model selection. We will look at both forward and
backward selection methods that utilize different criterions (R2

adj , p-values, or AIC).

10.3.1 Predicting runs with backward selection
The first step in backward selection is to define a full model. Since we created a modified dataset for
predicting runs we can use a shortcut, runs ~ ., for telling R to use all remaining variables to predict runs.
runs_full <- lm(runs ~ ., data = mlb11_runs)
summary(runs_full)

Exercise 1: How many variables are being used to predict runs in the full model? How many parameters
are being estimated in the full model? How many of the parameters are significantly different than 0 at the
0.05 level? What is the full model’s R2

adj?

Now that we have a full model defined we can go about backwards model selection. The step() function
in R makes it extremely easy to use AIC (Akiake’s Information Criterion) for model selection. Similar to
R2

adj , AIC applies a penalty to models using more predictor variables. Run the following code to determine
the best model for predicting a team’s runs in a season using backward selection with AIC as the criterion
(note that lower AIC indicates a better model).
runs_backAIC <- step(runs_full, direction = "backward")
summary(runs_backAIC)

Exercise 2: How many steps did the backward selection using AIC conduct before selecting a model? Which
variable was the first to be removed? Which variables ended up in the final model? How many parameters
are being estimated in this final model? How many of the parameters in this final model are significantly
different than 0 at the 0.05 level? Does this final model have a higher R2

adj than the full model for runs?

Instead of AIC, let’s use R2
adj as our criterion when conducting backward selection. Remember that R2

adj

indicates a better model.
## Step 1
summary(lm(runs ~ . , mlb11_runs))$adj.r
summary(lm(runs ~ . - at_bats, mlb11_runs))$adj.r
summary(lm(runs ~ . - hits, mlb11_runs))$adj.r
summary(lm(runs ~ . - homeruns, mlb11_runs))$adj.r
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summary(lm(runs ~ . - bat_avg, mlb11_runs))$adj.r
summary(lm(runs ~ . - strikeouts, mlb11_runs))$adj.r
summary(lm(runs ~ . - stolen_bases, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_slug, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_obs, mlb11_runs))$adj.r

Since the model which removed new_onbase has the highest R2
adj we move onto step 2 using that model and

continue by removing one variable at a time and calculate the new R2
adj for each model.

## Step 2
summary(lm(runs ~ . - new_onbase, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - at_bats, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - hits, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - homeruns, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - bat_avg, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - strikeouts, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - stolen_bases, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - new_slug, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - new_obs, mlb11_runs))$adj.r

Since the model in step 2 that removed strikeouts has the highest R2
adj we move onto step 3 using the

model that now has both new_onbase and strikeouts removed and continue by removing one variable at
a time and calculating the new R2

adj for each model.
## Step 3
summary(lm(runs ~ . - new_onbase - strikeouts, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - strikeouts - at_bats, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - strikeouts - hits, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - strikeouts - homeruns, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - strikeouts - bat_avg, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - strikeouts - stolen_bases, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - strikeouts - new_slug, mlb11_runs))$adj.r
summary(lm(runs ~ . - new_onbase - strikeouts - new_obs, mlb11_runs))$adj.r

Since none of the models which remove one more additional variable from the model that already excludes
both new_onbase and strikeouts have larger R2

adj , we stop the process and now have a final model. In the
code below we store the final model and look at a summary of the final model.
runs_backADJr <- lm(runs ~ . - new_onbase - strikeouts, mlb11_runs)
summary(runs_backADJr)

3. Which variables ended up in the final model when using backward selection with R2
adj? How many

parameters are being estimated in this final model? How many of the parameters in this final model
are significantly different than 0 at the 0.05 level? Does this final model have a higher R2

adj than the
full model for runs? Higher than the final model when using backward selection with AIC?

Finally let’s use a p-value method with a 0.05 significance level as our criterion when conducting backward
selection. Remember that higher p-values are bad so we remove a variable when if it has the highest p-value
which is greater than 0.05. If all p-values are less than 0.05 then we stop and we have arrived at our final
model. Fortunately, R does have a function that makes this easier whish is drop1() - add1() is for forward
selection. We must input the model fit and then indicate that test = "F" so p-values are printed.
## Step 1
drop1(lm(runs ~ . , mlb11_runs), test = "F")
## Step 2
drop1(lm(runs ~ . - new_onbase, mlb11_runs), test = "F")
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## Step 3
drop1(lm(runs ~ . - new_onbase - strikeouts, mlb11_runs), test = "F")
## Step 4
drop1(lm(runs ~ . - new_onbase - strikeouts - homeruns, mlb11_runs), test = "F")
## Step 5
drop1(lm(runs ~ . - new_onbase - strikeouts - homeruns - at_bats, mlb11_runs), test = "F")
## Step 6
drop1(lm(runs ~ . - new_onbase - strikeouts - homeruns - at_bats - hits, mlb11_runs), test = "F")
## Step 7
drop1(lm(runs ~ . - new_onbase - strikeouts - homeruns - at_bats - hits - bat_avg, mlb11_runs), test = "F")
## Step 8
drop1(lm(runs ~ . - new_onbase - strikeouts - homeruns - at_bats - hits - bat_avg - new_slug, mlb11_runs), test = "F")

Below we store the final model selected under this method and examinie it using summary().
## Final model using backward selection with p-value criterion
runs_backPval <- lm(runs ~ . - new_onbase - strikeouts - homeruns - at_bats - hits - bat_avg - new_slug, mlb11_runs)
summary(runs_backPval)

Exercise 4: Which variables ended up in the final model using a p-value method with a 0.05 significance
level as our criterion when conducting backward selection? How many parameters are being estimated in
this final model? How many of the parameters in this final model are significantly different than 0 at the
0.05 level? Does this final model have a higher R2

adj than the full model for runs? Why might someone prefer
this final model over all of the models thus far?

10.3.2 Predicting runs with forward selection
The first step in forward selection is to set up a null/base model to build up from. This model could include
variables that researchers stipulate a model must have for theoretical reasons. No such variables exisit in our
case which means our null model will only have the intercept in it. We must also specify the full model so
the preocedure knows which models to attempt. Note that the full model will be athe same as in backward
selection.
## Creating the null model for runs
runs_null <- lm(runs ~ 1, data = mlb11_runs)
summary(runs_null)

Now that we have a null model defined we can go about forward model selection. Once again we will us the
step() function in R to use AIC (Akiake’s Information Criterion) for model selection - remember that lower
AIC indicates a better model.
runs_forwardAIC <- step(runs_null, direction = "forward", scope = formula(runs_full))
summary(runs_forwardAIC)

Exercise 5: How many steps did the forward selection using AIC conduct before selecting a model? Which
variable was the first to be added? Which previous selection method does this agree with - this doesn’t
always happen?

Instead of AIC, let’s use R2
adj as our criterion when conducting forward selection. Remember that R2

adj

indicates a better model.
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## Step 1
summary(lm(runs ~ 1 , mlb11_runs))$adj.r
summary(lm(runs ~ + at_bats, mlb11_runs))$adj.r
summary(lm(runs ~ + hits, mlb11_runs))$adj.r
summary(lm(runs ~ + homeruns, mlb11_runs))$adj.r
summary(lm(runs ~ + bat_avg, mlb11_runs))$adj.r
summary(lm(runs ~ + strikeouts, mlb11_runs))$adj.r
summary(lm(runs ~ + stolen_bases, mlb11_runs))$adj.r
summary(lm(runs ~ + new_onbase, mlb11_runs))$adj.r
summary(lm(runs ~ + new_slug, mlb11_runs))$adj.r
summary(lm(runs ~ + new_obs, mlb11_runs))$adj.r

Since the model that added new_obs has the highest R2
adj we move onto step 2 using that model and continue

by adding one variable at a time and calculate the new R2
adj for each model.

## Step 2
summary(lm(runs ~ new_obs, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + at_bats, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + hits, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + homeruns, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + bat_avg, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + strikeouts, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + stolen_bases, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + new_onbase, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + new_slug, mlb11_runs))$adj.r

Since the model is step 2 that added stolen_bases has the highest R2
adj we move onto step 3 using that

model and continue by adding one variable at a time and calculate the new R2
adj for each model.

## Step 3
summary(lm(runs ~ new_obs + stolen_bases, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + stolen_bases + at_bats, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + stolen_bases + hits, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + stolen_bases + homeruns, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + stolen_bases + bat_avg, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + stolen_bases + strikeouts, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + stolen_bases + new_onbase, mlb11_runs))$adj.r
summary(lm(runs ~ new_obs + stolen_bases + new_slug, mlb11_runs))$adj.r

Since none of the models that added one more variable in step 3 resulted in an increased R2
adj , we stop the

process and now have a final model. In the code below we store the final model and look at a summary of
the final model.
runs_forwardADJr <- lm(runs ~ new_obs + stolen_bases, mlb11_runs)
summary(runs_forwardADJr)

Exercise 6: Does the final model selected using forward selection with R2
adj differ from the final model

using forward selection with AIC?

Finally let’s use a p-value method with a 0.05 significance level as our criterion when conducting forward
selection. Remember that hlower p-values are consider better so we add a variable when it has the lowest
p-value and is less than 0.05. If newly added variable is not less than 0.05 then we stop and conclude that we
have arrived at our final model. Fortunately, R does have a function that makes this easier which is add1().
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We must input model fit, the possible full model, and then indicate that the test = "F" so p-values are
printed.
## Step 1
add1(lm(runs ~ 1 , mlb11_runs), test = "F", scope = formula(runs_full))
## Step 2
add1(lm(runs ~ new_obs , mlb11_runs), test = "F", scope = formula(runs_full))
## Step 3
add1(lm(runs ~ new_obs + stolen_bases, mlb11_runs), test = "F", scope = formula(runs_full))

Below we store the final model selected under this method and examinie it using summary().
## Final model using backward selection with p-value criterion
runs_forwardPval <- lm(runs ~ new_obs + stolen_bases, mlb11_runs)
summary(runs_forwardPval)

Exercise 7: What do you note about the final model selected using forward selection with p-values? This
does not always occur.

10.4 Assessing the conditions
After conducting a model selection procedures we should conduct graphical checks to explore wheather our
conditions for multiple regression are being met. R has built in command for basic diagnostic plots. Simply
use the plot() function and input the model that you desire diagnostic plots for as demonstrated in the
code below.
plot(runs_backAIC)

None of the models have and severe departures from our necessary conditions for multiple regression. Di-
agnostic methods can be tricky and to really get a good understanding of them will require either further
self-study or taking a regression course.

10.5 On Your Own
• Using all the available variables in our dataset, conduct backward selection using AIC to select the

best model for predicting wins for a team in a single season. Hints: make sure you are using the
mlb11_wins dataset. How many variables are being used to predict wins in the full model? Which
variables are included in the this final model?

• Construct a 95% confidence interval for one of the slopes in the final model from part 1.

• Conduct backward selection using R2
adj and then p-value method to select the best model for predicting

wins. Do either of the final models selected using these criterions match the final model selected using
backward selection with AIC? Do they match eachother?

• Conduct forward selection with the three different criterions we have been using to select the best
model for predicting wins for each. Are they all the same? Different?
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